
Introduction to linear control theory

Lecture notes, Shandong University

Guillaume Olive
1

March 30, 2017

1
E-mail: math.golive@gmail.com



2

� Guillaume Olive �



Contents

1 Controllability of time-invariant linear O.D.E.s 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Conditions of controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Gramian of controllability . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Kalman rank condition . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Fattorini-Hautus test . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Partial controllability . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.5 Higher order O.D.E.s . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Optimal controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 Control of minimal L2-norm . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Control cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Variational approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Controls with constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.1 Su�cient conditions for large times . . . . . . . . . . . . . . . . . . . 23
1.5.2 Time-optimal problems . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.2.1 Existence of time-optimal controls . . . . . . . . . . . . . . 26
1.5.2.2 Maximum principle . . . . . . . . . . . . . . . . . . . . . . 27
1.5.2.3 Bang-bang controls . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Controllability of the heat equation 33

2.1 Background on the heat equation . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Controllability and duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Approximate controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

References 44

3



4 CONTENTS

� Guillaume Olive �



Chapter 1

Controllability of time-invariant

linear O.D.E.s

1.1 Introduction

In this chapter we focus on the n× n time-invariant linear O.D.E.{
d

dt
y = Ay +Bu, t ∈ (0, T ),

y(0) = y0,
(1.1)

where:

• T > 0 is a given time called time of control,

• y0 = (y0
1, . . . , y

0
n) is the initial data,

• y = (y1, . . . , yn) is the state,

• A ∈ Rn×n is a matrix that couples the equations of the system,

• u = (u1, . . . , um) are at our disposal, they are the so-called controls,

• B ∈ Rn×m is a matrix that localizes the controls.

We recall that (1.1) is well-posed: for every y0 ∈ Rn and every u ∈ L2(0, T )m, there
exists a unique solution y ∈ H1(0, T )n to the system (1.1) given by the Duhamel's formula

y(t) = etAy0 +

∫ t

0
e(t−s)ABu(s) ds, ∀t ∈ [0, T ]. (1.2)

Note in particular that
y ∈ C0([0, T ])n,
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6 CHAPTER 1. CONTROLLABILITY OF O.D.E.S

which is crucial to de�ne the di�erent notions of controllability. Finally, note that

‖y(t)‖ ≤ C
(∥∥y0

∥∥+ ‖u‖L2(0,T )m

)
, ∀t ∈ [0, T ], (1.3)

for some C > 0 that does not depend on y0 nor on u.

De�nition 1.1.1 (Controllability). We say that the system (1.1) is:

(i) exactly controllable in time T if, for every y0, y1 ∈ Rn, there exists u ∈ L2(0, T )m

such that the corresponding solution y to system (1.1) satis�es

y(T ) = y1.

(ii) null-controllable in time T if the above property holds for y1 = 0.

(iii) approximately controllable in time T if, for every ε > 0 and every y0, y1 ∈ Rn, there
exists u ∈ L2(0, T )m such that the corresponding solution y to system (1.1) satis�es∥∥y(T )− y1

∥∥ ≤ ε.
Example 1.1.2. If m = n and B = Id, then (1.1) is exactly controllable in time T for every

T > 0. Indeed, it is enough to take any smooth function y with y(0) = y0 and y(T ) = y1

and set u = d
dty −Ay.

Remark 1.1.3. Clearly, exact controllability in time T implies null and approximate con-
trollability in the same time T .

Remark 1.1.4. Let us consider the nonhomogeneous system{
d

dt
y = Ay +Bu+ f(t), t ∈ (0, T ),

y(0) = y0,
(1.4)

where f ∈ L2(0, T )n. Then, we can de�ne the corresponding notions of controllability
exactly as in De�nition 1.1.1, where instead y is now the solution to (1.4). It turns out
that, if (1.1) is exactly controllable in time T , then (1.4) is exactly controllable in time
T for every f ∈ L2(0, T )n (the converse being obvious, we see that it is enough to only
study the exact controllability of (1.1)). Indeed, �rstly we consider the nonhomogeneous
free system (that is without controls):{

d

dt
ȳ = Aȳ + f(t), t ∈ (0, T ),

ȳ(0) = y0,

and then we take a control that steers in time T the solution to (1.1) from 0 to y1 − ȳ(T ).
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1.1. INTRODUCTION 7

Let us now reformulate the di�erent notions of controllability. To this goal we introduce
the linear operators

FT : Rn −→ Rn
y0 7−→ y(T ),

where y is the solution to the free system:{
d

dt
y = Ay, t ∈ (0, T ),

y(0) = y0,

and
GT : L2(0, T )m −→ Rn

u 7−→ ŷ(T ),
(1.5)

where ŷ is the solution to the nonhomogeneous system with zero initial data:{
d

dt
ŷ = Aŷ +Bu, t ∈ (0, T ),

ŷ(0) = 0.

With these notations, we have

y(T ) = y(T ) + ŷ(T )
= FT y

0 +GTu,
(1.6)

where y is the solution to (1.1). It follows that:

(i) (1.1) is exactly controllable in time T if, and only if,

ImGT = Rn. (1.7)

(ii) (1.1) is null-controllable in time T if, and only if,

ImFT ⊂ ImGT . (1.8)

(iii) (1.1) is approximately controllable in time T if, and only if,

ImGT = Rn, (1.9)

where ImGT denotes the closure of the set ImGT .

As a consequence of these reformulations we see that all the notions of controllability
are equivalent for the �nite dimensional system (1.1):

Proposition 1.1.5. Let T > 0. The following statements are equivalent:

� Guillaume Olive �



8 CHAPTER 1. CONTROLLABILITY OF O.D.E.S

(i) (1.1) is exactly controllable in time T .

(ii) (1.1) is null-controllable in time T .

(iii) (1.1) is approximately controllable in time T .

Therefore, from now on, we shall only say "controllable in time T".

Proof. Since ImFT = Rn, it is clear that (1.7) and (1.8) are equivalent. On the other
hand, (1.7) and (1.9) are clearly equivalent since ImGT is a �nite dimensional subspace
and therefore it is closed.

Remark 1.1.6. We arbitrarily chose to consider controls which are in L2(0, T )m but let
us mention that we can actually consider any dense subspace of L2(0, T )m as control set.
Indeed, for any subspace V ⊂ L2(0, T )m, we have

ImGT |V ⊂ ImGT |V = ImGT |V ,

where the inclusion holds because GT is continuous (see (1.3)) and the equality holds
because ImGT |V is �nite dimensional. In particular, if there exists a control which is
barely in L2(0, T )m, then there exists as well a control which is smooth, say in C∞c (0, T )m.

1.2 Duality

Since GT ∈ L(L2(0, T )m,Rn) thanks to (1.3), we have

ImGT = Rn ⇐⇒ kerG∗T = {0} . (1.10)

Thus, we want compute G∗T . To this end we introduce the so-called adjoint system of (1.1),
that is {

− d

dt
z = A∗z, t ∈ (0, T ),

z(T ) = z1,
(1.11)

where z1 ∈ Rn. Then, multiplying (1.1) by z and integrating by parts we obtain the
following fundamental relation:

y(T ) · z1 − y0 · z(0) =

∫ T

0
u(t) ·B∗z(t) dt, (1.12)

valid for every y0 ∈ Rn, z1 ∈ Rn and u ∈ L2(0, T )m. In (1.12) and in the sequel, · denotes
the inner product (in Rn or in Rm). Thanks to (1.12) we readily see that

G∗T : Rn −→ L2(0, T )m

z1 7−→ B∗z.
(1.13)

Using (1.10), we have obtained the following fundamental result:
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1.3. CONDITIONS OF CONTROLLABILITY 9

Theorem 1.2.1 (Duality). (1.1) is controllable in time T if, and only if,

∀z1 ∈ Rn,
(
B∗z(t) = 0, ∀t ∈ [0, T ]

)
=⇒ z1 = 0. (1.14)

Remark 1.2.2. Clearly, (1.14) is equivalent to

∀z1 ∈ Rn,
(
B∗z̃(t) = 0, ∀t ∈ [0, T ]

)
=⇒ z1 = 0,

where z̃(t) = z(T − t). But z̃ is analytic on (0,+∞). Thus, (1.14) holds if, and only if,

∀z1 ∈ Rn,
(
B∗z̃(t) = 0, ∀t ∈ [0,+∞)

)
=⇒ z1 = 0.

Therefore, the controllability of (1.1) does not depend on the time of control T . In other
words, if there exists T > 0 such that (1.1) is controllable in time T , then, for every T > 0,
(1.1) is controllable in time T . For this reason, in the sequel we shall only say that (1.1) is
"controllable".

Remark 1.2.3. The strength of the duality is that it reduces the task of proving an existence
result (existence of a control) to the task of proving a uniqueness result, which is often easier
to handle.

1.3 Conditions of controllability

1.3.1 Gramian of controllability

Theorem 1.3.1. Let T > 0. (1.1) is controllable if, and only if, the n× n matrix

ΛT =

∫ T

0
e(T−t)ABB∗e(T−t)A∗ dt, (1.15)

is invertible. ΛT is called the Gramian of controllability or HUM operator.

Remark 1.3.2. Note that ΛT is always symmetric and positive semi-de�nite. In particular,
it is invertible if, and only if, it is positive de�nite. Now observe that ΛT is positive de�nite
if, and only if, there exists CT > 0 such that

∥∥z1
∥∥2 ≤ C2

T

∫ T

0
‖B∗z(t)‖2 dt, ∀z1 ∈ Rn. (1.16)

This inequality is called observability inequality and the best constant CT > 0 in (1.16) is
called the control cost. We shall come back to this notion later on in Section 1.4.2.
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10 CHAPTER 1. CONTROLLABILITY OF O.D.E.S

Proof. By Theorem 1.2.1, (1.1) is controllable if, and only if,

kerG∗T = {0} .

Clearly, this is equivalent to
kerGTG

∗
T = {0} .

By de�nition of GT (see (1.5)) and computation of G∗T (see (1.13)) we readily see that
GTG

∗
T = ΛT .

1.3.2 Kalman rank condition

Lemma 1.3.3. For every T > 0, we have

kerG∗T =
(
Im
(
B|AB| · · · |An−1B

))⊥
.

Proof. By (1.13), z1 ∈ kerG∗T if, and only if,

B∗z(t) = 0, ∀t ∈ [0, T ], (1.17)

where z(t) = e(T−t)A∗z1 is the solution to the adjoint system (1.11). Since z is analytic on
(0, T ), we have (1.17) if, and only if, for some 0 < t0 < T ,

dk

dtk
(B∗z)(t0) = 0, ∀k ∈ {0, 1, . . .} .

Computing B∗z that gives

B∗(A∗)kz1 = 0, ∀k ∈ {0, 1, . . .} .

By the Cayley-Hamilton theorem, this is equivalent to

B∗(A∗)kz1 = 0, ∀k ∈ {0, 1, . . . , n− 1} .

To summarize, z1 ∈ kerG∗T if, and only, if

z1 ∈ ker


B∗

B∗A∗

...
B∗(A∗)n−1

 .

To conclude, observe that

ker


B∗

B∗A∗

...
B∗(A∗)n−1

 = ker
(
B|AB| · · · |An−1B

)∗
=
(
Im
(
B|AB| · · · |An−1B

))⊥
.
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1.3. CONDITIONS OF CONTROLLABILITY 11

An immediate consequence of Theorem 1.2.1 and Lemma 1.3.3 is the following funda-
mental result:

Theorem 1.3.4 (Kalman rank condition). (1.1) is controllable if, and only if,

rank (B|AB| · · · |An−1B) = n. (1.18)

Observe that, as expected (see Remark 1.2.2), the condition (1.18) does not depend on
the time of control T .

The Kalman rank condition is an easy checkable condition for the controllability as it
is shown on the following example.

Example 1.3.5. The 2× 2 system
d

dt
y1 = a11y1 + a12y2 + u,

d

dt
y2 = a21y1 + a22y2,

t ∈ (0, T ),

y1(0) = y0
1, y2(0) = y0

2,

is controllable if, and only if,

a21 6= 0.

Remark 1.3.6. Thanks to the Kalman rank condition we also see that we can �x the end-
points of the control (and of its derivatives). Indeed, say that we look for controls u such
that, in addition,

u(0) = u0, u(T ) = u1,

for some u0, u1 ∈ Rm. Then, to this end we consider u as a new variable and we introduce
the (n+m)× (n+m) augmented system

d
dty = Ay +Bu,
d
dtu = v,

t ∈ (0, T ),

y(0) = y0, u(0) = u0,

where v is now the control. We easily check that this system satis�es the associated Kalman
rank condition.

Actually, we even have a stronger result than Theorem 1.3.4 since we can give a precise
characterization of the reachable states:

Theorem 1.3.7. Let y0, y1 ∈ Rn and T > 0 be �xed. There exists u ∈ L2(0, T )m such

that the corresponding solution y to (1.1) satis�es y(T ) = y1 if, and only if,

y1 − eTAy0 ∈ Im
(
B|AB| · · · |An−1B

)
.

� Guillaume Olive �



12 CHAPTER 1. CONTROLLABILITY OF O.D.E.S

Proof. Using (1.6) we readily see that there exists u ∈ L2(0, T )m such that the correspond-
ing solution y to (1.1) satis�es y(T ) = y1 if, and only if,

y1 − eTAy0 ∈ ImGT .

Since ImGT = (kerG∗T )⊥, the result follows from Lemma 1.3.3.

There is a canonical form of controllable systems.

Proposition 1.3.8 (Canonical form of Brunovski). Assume that m = 1. Assume that

(1.18) holds and let K = (B|AB| · · · |An−1B) (note that K ∈ Rn×n). Then,

K−1AK = Ã, K−1B = B̃,

with

Ã =



0 · · · · · · 0 α0

1
. . .

...
...

0
. . .

. . .
...

...
...

. . . 0
...

0 · · · 0 1 αn−1


, B̃ =


1
0
...
...

0

 , (1.19)

where α0, . . . , αn−1 ∈ R are the coe�cients of the characteristic polynomial of A, namely

p(λ) = λn − αn−1λ
n−1 − . . .− α0, λ ∈ C.

Proof. The proof is a simple computation of KÃ and KB̃.

It is worth mentioning that, once we know the "good" condition for the controllability
(namely, (1.18)), there exists a direct proof of Theorem 1.3.4. By direct proof we mean a
proof that is not using the duality at all. It is based on Proposition 1.3.8 and the following
result, that we shall prove in a self-contained way:

Proposition 1.3.9. Let α0, . . . , αn−1 ∈ R. The system{
d

dt
y = Ãy + B̃u, t ∈ (0, T ),

y(0) = y0,
(1.20)

where Ã and B̃ are given by (1.19), is controllable.

Remark 1.3.10. Combining Proposition 1.3.8 with 1.3.9 this gives a direct proof of the
implication "⇐=" in Theorem 1.3.4 for m = 1.
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1.3. CONDITIONS OF CONTROLLABILITY 13

Proof of Proposition 1.3.9 (without using Theorem 1.3.4). We give a direct proof. We re-
call that it is su�cient to only consider the target y1 = 0 (see Proposition 1.1.5). Let y
be the free solution to (1.20), that is the solution to (1.20) with u = 0. Let us introduce a
cut-o� function η ∈ C∞([0, T ]) such that

η = 1 on [0, T/3], η = 0 on [2T/3, T ].

Observe that, because of the structure (1.19), the last equation of (1.20) is

d

dt
yn = yn−1 + αn−1yn.

We set

yn = ηyn.

Then, we have no choice for yn−1 but to set

yn−1 =
d

dt
yn − αn−1yn.

By induction, we have to set

yk =
d

dt
yk+1 − αkyn, ∀k ∈ {n− 2, . . . , 1} ,

and then

u =
d

dt
y1 − α0yn.

Finally, thanks to the de�nition of η, note that

∀k ∈ {1, . . . , n} ,
{
yk = yk on [0, T/3],
yk = 0 on [2T/3, T ],

so that

y(0) = y0, y(T ) = 0.

1.3.3 Fattorini-Hautus test

There is another important characterization of the controllability, which is a dual version
of the Kalman rank condition:

Theorem 1.3.11 (Fattorini-Hautus test). (1.1) is controllable if, and only if,

ker(λ−A∗) ∩ kerB∗ = {0} , ∀λ ∈ C. (1.21)
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14 CHAPTER 1. CONTROLLABILITY OF O.D.E.S

Remark 1.3.12. Theorem 1.3.11 shows in particular that the following condition is necessary
for the controllability:

dim ker(λ−A∗) ≤ m, ∀λ ∈ C.

Indeed, assume that there exists a linearly independent family φ1, . . . , φm+1 of ker(λ −
A∗). Then, B∗φ1, . . . , B

∗φm+1 is linearly dependent as B∗ ∈ Rm×n. Thus, there exists
(α1, . . . , αm+1) 6= (0, . . . , 0) such that

∑m+1
k=1 αkB

∗φk = 0. Let z1 =
∑m+1

k=1 αkφk. Then,
B∗z1 = 0. But z1 ∈ ker(λ− A∗). Therefore, (1.21) implies that z1 = 0, that is α1 = . . . =
αm+1 = 0, a contradiction.

Proof. By Theorem 1.2.1, (1.1) is controllable if, and only if,

kerG∗T = {0} .

Assume that kerG∗T = {0}. Let z1 ∈ ker(λ − A∗) ∩ kerB∗. Then, z(t) = eλ(T−t)z1

and B∗z(t) = eλ(T−t)B∗z1 = 0 for every t ∈ [0, T ]. Therefore, z1 = 0 by assumption.
Conversely, assume that kerG∗T 6= {0}. Let us �rst prove that:

(i) kerG∗T ⊂ kerB∗.

(ii) A∗(kerG∗T ) ⊂ kerG∗T .

Let z1 ∈ kerG∗T . Then,

B∗z(t) = 0, ∀t ∈ [0, T ].

Taking t = T we obtain B∗z1 = 0, that is z1 ∈ kerB∗. On the other hand, taking the
derivative we obtain

B∗e(T−t)A∗A∗z1 = 0, ∀t ∈ [0, T ],

that is A∗z1 ∈ kerG∗T . Consequently, by (ii) we see the restriction of A∗ to kerG∗T is a
linear operator from the �nite dimensional space kerG∗T into itself and, since kerG∗T 6=
{0}, therefore possesses at least one complex eigenvalue. Since in addition by (i) we have
kerG∗T ⊂ kerB∗, this shows that there exist λ ∈ C and φ ∈ Rn with φ 6= 0 such that

A∗φ = λφ, B∗φ = 0.

This proves that (1.21) fails.

1.3.4 Partial controllability

Sometimes we want to control not all but only some components of the system (1.1).
This leads to the notion of partial controllability (also called output controllability in the
literature).
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1.3. CONDITIONS OF CONTROLLABILITY 15

De�nition 1.3.13 (Partial controllability). Let P ∈ Rp×n with p ∈ N∗. We say that
the system (1.1) is partially controllable if, for every y0 ∈ Rn and y1 ∈ Rp, there exists
u ∈ L2(0, T )m such that the corresponding solution y to system (1.1) satis�es

Py(T ) = y1.

One can take for instance the projection on the �rst p components:

P : Rp × Rn−p −→ Rp
(y1, y2) 7−→ y1,

where p ∈ {1, . . . , n− 1} is the number of components we would like to control.

Mimicking the procedure developed in the previous sections, we see that (1.1) is partially
controllable if, and only if,

ImPGT = Rn.

This is equivalent to

kerG∗TP
∗ = {0} .

Thanks to the expression of G∗T (see (1.13)) we see that this is also equivalent to

∀z1 ∈ Rp,
(
B∗z(t) = 0, a.e. t ∈ (0, T )

)
=⇒ z1 = 0,

where z is the solution to the following adjoint system:{
− d

dt
z = A∗z, t ∈ (0, T ),

z(T ) = P ∗z1.

Reproducing the proof of Lemma 1.3.3 we easily obtain the following result:

Theorem 1.3.14 (Kalman rank condition). (1.1) is partially controllable if, and only if,

rank (PB|PAB| · · · |PAn−1B) = p.

1.3.5 Higher order O.D.E.s

An interesting consequence of Theorem 1.3.4 is that it also gives a characterization of the
controllability of higher order systems.

Let y0, ẏ0 ∈ Rn and let us consider the second order system:
d2

dt2
y = Ay +Bu, t ∈ (0, T ),

y(0) = y0,
d

dt
y(0) = ẏ0.

(1.22)
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16 CHAPTER 1. CONTROLLABILITY OF O.D.E.S

Firstly, we should point out that there are a priori several ways to de�ne to controllability
of (1.22). Do we want to achieve y(T ) = d

dty(T ) = 0 or only y(T ) = 0 for instance ? Note
that the �rst goal is more physical since (0, 0) ∈ Rn×Rn is a stable state of the system (1.22)
(while (0, ẏ1) is not) and, therefore, once the system has reached this state, it stays at this
state without any additional control required. However, we will study the two situations
as both are of mathematical interest.

De�nition 1.3.15 (Controllability). We say that the system (1.22) is:

(i) controllable if, for every y0, ẏ0 ∈ Rn and y1, ẏ1 ∈ Rn, there exists u ∈ L2(0, T )m such
that the corresponding solution y to system (1.22) satis�es

y(T ) = y1,
d

dt
y(T ) = ẏ1.

(ii) partially controllable if, for every y0, ẏ0 ∈ Rn and y1 ∈ Rn, there exists u ∈ L2(0, T )m

such that the corresponding solution y to system (1.22) satis�es

y(T ) = y1.

Of course the notion of partial controllability for (1.22) coincides with the notion of
partial controllability of Section 1.3.4 for an underlying �rst order system. Surprisingly
enough, it turns out that the notions of controllability and partial controllability for (1.22)
are equivalent.

Theorem 1.3.16. The following statements are equivalent:

(i) (1.22) is controllable.

(ii) (1.22) is partially controllable.

(iii) rank (B|AB| · · · |An−1B) = n.

Proof. "(i) ⇐⇒ (iii)". Introducing the new variable

ỹ =

(
y
d
dty

)
∈ R2n,

and

Ã =

(
0 Id
A 0

)
∈ R2n×2n, B̃ =

(
0
B

)
∈ R2n×m,

we see that the n × n second order system (1.22) is controllable if, and only if, so is the
following 2n× 2n �rst order system:{

d

dt
ỹ = Ãỹ + B̃u, t ∈ (0, T ),

ỹ(0) = ỹ0.
(1.23)
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1.4. OPTIMAL CONTROLS 17

By Theorem 1.3.4, the controllability of (1.23) is equivalent to the corresponding Kalman
rank condition, that is

rank (B̃|ÃB̃| · · · |Ã2n−1B̃) = 2n.

A computation shows that

(B̃|ÃB̃| · · · |Ã2n−1B̃) =

(
0 B 0 AB · · · 0 An−1B
B 0 AB 0 · · · An−1B 0

)
. (1.24)

Therefore,
rank (B̃|ÃB̃| · · · |Ã2n−1B̃) = 2 rank (B|AB| · · · |An−1B).

"(ii) ⇐⇒ (iii)". Let us introduce

P : Rn × Rn −→ Rn
(y1, y2) 7−→ y1.

Then, the n×n second order system (1.22) is partially controllable if, and only if, the 2n×2n
�rst order system (1.23) is partially controllable. By Theorem 1.3.14, this is equivalent to
the corresponding Kalman rank condition, namely

rank (PB̃|PÃB̃| · · · |PÃ2n−1B̃) = n.

Thanks to (1.24) we readily see that it is equivalent to rank (B|AB| · · · |An−1B) = n.

1.4 Optimal controls

1.4.1 Control of minimal L2-norm

Assume that (1.1) is controllable. A priori there is no reason for a control to be unique.
Let y0, y1 ∈ Rn and let us introduce the corresponding set of controls

U =
{
u ∈ L2(0, T )m, y(T ) = y1

}
.

We consider the minimization problem

min
u∈U

1

2
‖u‖2L2(0,T )m .

A solution of this problem will be called a control of minimal L2-norm.

Theorem 1.4.1 (L2-optimal control). Assume that (1.1) is controllable. Then, for every
y0, y1 ∈ Rn, there exists a unique control of minimal L2- norm and it is given by

uopt(t) = B∗e(T−t)A∗Λ−1
T

(
y1 − eTAy0

)
, (1.25)

where ΛT ∈ Rn×n is the Gramian of controllability (see (1.15)). The control uopt is also

called the HUM control.
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18 CHAPTER 1. CONTROLLABILITY OF O.D.E.S

Remark 1.4.2. Note that the control uopt is analytic on R.

Lemma 1.4.3 (Hilbert projection theorem). Let H be a Hilbert space. Let C ⊂ H be a

nonempty closed convex. For every x ∈ H, there exists a unique p ∈ C such that

‖x− p‖ = min
y∈C
‖x− y‖ .

Moreover, p is the unique element of C that satis�es

〈x− p, y − p〉 ≤ 0, ∀y ∈ C.

Proof of Theorem 1.4.1. Firstly, observe that U is not empty by assumption. Let then
u0 ∈ U . We easily see that

U = u0 + kerGT .

Therefore, U is an a�ne subspace of Rn. In particular, it is a closed convex and, by Lemma
1.4.3, there exists a unique uopt ∈ U (the projection of 0 on U) such that

‖uopt‖ = min
u∈U
‖u‖ .

Moreover, we have
〈uopt, uopt − u〉L2 ≤ 0, ∀u ∈ U.

Since U = uopt + kerGT , this gives

〈uopt, v〉L2 = 0, ∀v ∈ kerGT .

Thus,
uopt ∈ (kerGT )⊥ = ImG∗T .

Then, there exists (z1
n)n such that

G∗T z
1
n −−−−−→n→+∞

uopt. (1.26)

But (z1
n)n converges. Indeed, since uopt ∈ U , we have

GTuopt = y1 − FT y0.

Since GT is a bounded operator, combined with (1.26) this gives

GTG
∗
T z

1
n −−−−−→n→+∞

y1 − FT y0.

By Theorem 1.15, we know that GTG
∗
T = ΛT is invertible. Thus,

z1
n −−−−−→n→+∞

Λ−1
T

(
y1 − FT y0

)
.

Coming back to (1.26), we obtain that

uopt = G∗TΛ−1
T

(
y1 − FT y0

)
.

The expressions of G∗T (see (1.13)) and FT �nally give (1.25).
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1.4. OPTIMAL CONTROLS 19

1.4.2 Control cost

In section we consider y0 = 0. Assume that (1.1) is controllable. Then, the map

Rn −→ L2(0, T )m

y1 7−→ uopt,

is a bounded linear map (see for instance (1.25)). We denote by CT its norm of operator.

De�nition 1.4.4 (Control cost). Assume that (1.1) is controllable. Then, the quantity

CT = sup
y1∈Rn

y1 6=0

‖uopt‖L2(0,T )m

‖y1‖
= sup

y1∈Rn

‖y1‖=1

‖uopt‖L2(0,T )m , (1.27)

where uopt is the control of minimal L2-norm steering the solution y to (1.1) from y0 = 0
to y1 in time T , is called the control cost.

The following proposition gives a dual characterization for the control cost:

Proposition 1.4.5. Assume that (1.1) is controllable. The control cost CT satis�es

CT = sup
z1∈Rn

z1 6=0

∥∥z1
∥∥√∫ T

0 ‖B∗z(t)‖
2 dt

= sup
z1∈Rn

‖z1‖=1

1√∫ T
0 ‖B∗z(t)‖

2 dt
, (1.28)

where z is the solution to the adjoint system (1.11). In other words, the control cost CT is

the best constant C > 0 such that the following inequality (called observability inequality)

holds: ∥∥z1
∥∥2 ≤ C2

∫ T

0
‖B∗z(t)‖2 dt, ∀z1 ∈ Rn.

Remark 1.4.6. Since the closed unit ball is compact in Rn, both supremum in (1.27) and
in (1.28) are actually maximum.

Proof. By homogeneity the second equality in (1.28) is clear. Next, observe that (see (1.15))∫ T

0
‖B∗z(t)‖2 dt = ΛT z

1 · z1, ∀z1 ∈ Rn,

and ΛT z
1 · z1 6= 0 for every z1 ∈ Rn with z1 6= 0 by controllability. Let z1 ∈ Rn with z1 6= 0

be �xed. Let y1 = z1 and let uopt be the associated optimal control. Using (1.12) and the
Cauchy-Schwarz inequality we have

∥∥z1
∥∥2 ≤

(∫ T

0
‖uopt(t)‖2 dt

) 1
2 (

ΛT z
1 · z1

) 1
2 .
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20 CHAPTER 1. CONTROLLABILITY OF O.D.E.S

It follows that ∥∥z1
∥∥2

ΛT z1 · z1
≤
∫ T

0 ‖uopt(t)‖2 dt
‖z1‖2

=

∫ T
0 ‖uopt(t)‖2 dt
‖y1‖2

.

This shows that the supremum is �nite with

sup
z1∈Rn

z1 6=0

∥∥z1
∥∥2

ΛT z1 · z1
≤ C2

T .

Conversely, let y1 ∈ Rn with y1 6= 0 and let uopt be the associated optimal control. Set

z1 = Λ−1
T y1.

Using (1.12) and the expression (1.25) of uopt we obtain

ΛT z
1 · z1 =

∫ T

0
‖uopt(t)‖2 dt.

Thus, ∫ T
0 ‖uopt(t)‖2 dt
‖y1‖2

=

∫ T
0 ‖uopt(t)‖2 dt
‖ΛT z1‖2

=
ΛT z

1 · z1

‖ΛT z1‖2
.

But
ΛT z

1 · z1

‖ΛT z1‖2
=

∥∥z1
∥∥2

ΛT z1 · z1

∣∣ΛT z1 · z1
∣∣2

‖ΛT z1‖2 ‖z1‖2
≤

∥∥z1
∥∥2

ΛT z1 · z1
.

This establishes the reversed inequality

C2
T ≤ sup

z1∈Rn

z1 6=0

∥∥z1
∥∥2

ΛT z1 · z1
.

Proposition 1.4.7. Assume that (1.1) is controllable. The control cost CT satis�es:

(i) CT → +∞ as T → 0+.

(ii) CT is decreasing.

Proof. By Proposition 1.4.5 we have

CT = sup
z1∈Rn

‖z1‖=1

1√∫ T
0 ‖B∗z̃(t)‖

2 dt
,
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1.4. OPTIMAL CONTROLS 21

where z̃(t) = z(T − t) does not depend on T . Then,

CT ≥
1√∫ T

0 ‖B∗z̃(t)‖
2 dt

−−−−→
T→0+

+∞.

To prove the second point, we simply observe that, for every T ′ ≥ T , we have∫ T ′

0
‖B∗z̃(t)‖2 dt ≥

∫ T

0
‖B∗z̃(t)‖2 dt, (1.29)

from which it immediately follows that

CT ′ ≤ CT , ∀T ′ ≥ T.

Remark 1.4.8. Using Remark 1.4.6 we see that CT is actually strictly decreasing. Indeed,
the inequality (1.29) is strict for T ′ > T because we can not have B∗z̃(t) = 0 for t ∈ [T, T ′]
by controllability. Taking the inverse and then the maximum over all z1 ∈ Rn with

∥∥z1
∥∥ = 1

we obtain that CT ′ < CT .

Remark 1.4.9. Since CT is decreasing and bounded from below by 0, we have CT →
infT>0CT as T → +∞. However, it is not true that infT>0CT = 0 in general. Indeed,
assume for instance that A has an unstable eigenvalue λ ∈ C with Reλ < 0. Then, taking
z1 = φ, where φ is a normalized eigenvector of A∗ associated with λ̄, a computation gives

C2
T ≥

−2Reλ

‖B∗φ‖2
, ∀T > 0.

Therefore infT>0CT > 0. This feature can be explained by remarking that, on the one
hand the system naturally dissipates to 0 in the direction of φ but on the other hand, the
goal is to reach a state that can be di�erent from 0. Of course, this also happens because
we deal with the notion of exact controllability.

Let us conclude this section by mentioning that we can actually obtain a very precise
asymptotic of the control cost as T → 0+ (the proof is admitted, see e.g. [Sei88]).

Theorem 1.4.10 (Estimate of the control cost). Assume that (1.1) is controllable and

let r ∈ {0, . . . , n− 1} be the smallest exponent such that rank (B|AB| · · · |ArB) = n. Then,
there exists γ > 0 such that

CT ∼
γ

T r+
1
2

as T → 0+.
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1.4.3 Variational approach

In this section we provide another approach to look at the optimal control problem. Let us
go back to the fundamental identity (1.12) with y1 = 0. We readily see that y(T ) = 0 if,
and only if,

0 =

∫ T

0
u(t) ·B∗z(t) dt+ y0 · z(0), ∀z1 ∈ Rn, (1.30)

This identity can be viewed an optimality condition for the extremal points of the
quadratic functional J : Rn → R de�ned by:

J(z1) =
1

2

∫ T

0
‖B∗z(t)‖2 dt+ y0 · z(0),

where z is the solution to the adjoint system (1.11).

Theorem 1.4.11. Assume that the system (1.1) is controllable. Then, for every y0 ∈ Rn,
J has a minimizer. Moreover, if z1

opt is a minimizer of J and zopt denotes the corresponding

solution to the adjoint system (1.11), then, the solution y to (1.1) corresponding to

uopt = B∗zopt,

satis�es y(T ) = 0. Moreover, uopt is the unique null-control of minimal L2-norm.

Lemma 1.4.12. Let J : Rn −→ R be a continuous and convex function that is also coercive,

that is

J(z1) −−−−−−−→
‖z1‖→+∞

+∞.

Then, J has (at least one) minimizer.

Proof of Theorem 1.4.11. Clearly, J is continuous and convex on Rn. Let us show that it
is coercive. Let us introduce the function N : Rn −→ R+ de�ned by

N(z1) =

∫ T

0
‖B∗z(t)‖2 dt, z1 ∈ Rn,

where z is the solution to the adjoint system (1.11). Since (1.1) is controllable, N de�nes
a norm on Rn. Since all the norms are equivalent in �nite dimension, there exists C > 0
such that ∥∥z1

∥∥2 ≤ C2

∫ T

0
‖B∗z(t)‖2 dt, ∀z1 ∈ Rn.

It follows that

J(z1) ≥ 1

2C2

∥∥z1
∥∥2 −

∣∣y0 · z(0)
∣∣

≥ 1

2C2

∥∥z1
∥∥2 − α

∥∥z1
∥∥ ,
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1.5. CONTROLS WITH CONSTRAINTS 23

with α =
∥∥y0
∥∥ eT‖A∗‖. Therefore,

J(z1) −−−−−−−→
‖z1‖→+∞

+∞.

By Lemma 1.4.12, J has a minimizer z1
opt. Next, note that J is di�erentiable on Rn with

DJ(ẑ1)z1 =

∫ T

0
B∗ẑ(t) ·B∗z(t) dt+ y0 · z(0), ∀ẑ1, z1 ∈ Rn,

where z (resp. ẑ) is the solution to the adjoint system (1.11) associated with z1 (resp. ẑ1).
Since z1

opt is a minimizer of J , we have DJ(z1
opt) = 0, that is

0 =

∫ T

0
B∗zopt(t) ·B∗z(t) dt+ y0 · z(0), ∀z1 ∈ Rn.

This means that uopt = B∗zopt is a null-control (see (1.30)). Let us �nally prove that uopt

is the unique null-control of minimal L2-norm. Let u ∈ L2(0, T )m be another null-control.
Since u and uopt are two null-controls, they both satisfy (1.30). Taking z1 = z1

opt in (1.30),
we obtain ∫ T

0
(u(t)− uopt(t)) · uopt(t) dt = 0.

It follows that
‖u‖2L2(0,T )m = ‖uopt‖2L2(0,T )m + ‖u− uopt‖2L2(0,T )m .

From this identity we see that uopt minimizes the L2-norm among all possible null-controls
and that it is the only one.

1.5 Controls with constraints

In this section we will look for controls u ∈ L2(0, T )m that satisfy in addition the constraint

u(t) ∈ U a.e. t ∈ (0, T ), (1.31)

where U is a �xed nonempty subset of Rm. Let us �rst point out that we have already en-
countered controls that satisfy some constraints, see Remarks 1.1.6 and 1.3.6. In this section
we provide some elements of the general theory for systems with constrained controls.

1.5.1 Su�cient conditions for large times

De�nition 1.5.1. Let C ⊂ Rn be the set of elements y0 ∈ Rn such that there exist T > 0
and u ∈ L2(0, T )m with (1.31) such that the corresponding solution y to (1.1) satis�es
y(T ) = 0. We say that the constrained system (1.1)-(1.31) is:
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24 CHAPTER 1. CONTROLLABILITY OF O.D.E.S

(i) null-controllable if C = Rn.

(ii) locally null-controllable if 0 ∈ C̊, where C̊ denotes the interior of the set C.

Remark 1.5.2. Observe that the time of control depends on the initial data in these de�ni-
tions.

Let us start by investigating what the controllability of the unconstrained system (1.1)
implies for the controllability of the constrained system (1.1)-(1.31).

Theorem 1.5.3. Assume that 0 ∈ Ů . The following statements are equivalent:

(i) The system (1.1) is controllable.

(ii) The system (1.1)-(1.31) is locally null-controllable.

Proof. (i) =⇒ (ii). Assume that (1.1) is controllable. Then, by Theorem 1.4.1, there exists
a control uopt with

‖uopt(t)‖ ≤M
∥∥y0
∥∥ , ∀t ∈ [0, T ],

for some M > 0 that depends only on A,B and T . Since 0 ∈ Ů by assumption, there exists
r > 0 such that, for every u ∈ Rm, if ‖u‖ < r then u ∈ U . Therefore, if y0 is small enough,
say

∥∥y0
∥∥ < r/M , then uopt(t) ∈ U for every t ∈ [0, T ] and 0 ∈ C̊.

(ii) =⇒ (i). Conversely, assume that (1.1) is not controllable, that is

rank (B|AB| · · · |An−1B) < n.

Thus, there exists a non zero vector ξ ∈ Rn such that

ξ∗AkB = 0, ∀k ∈ {0, 1, . . . , n− 1} .

Using the Cayley-Hamilton theorem it follows that

ξ∗AkB = 0, ∀k ∈ {0, 1, . . .} .

Thus,

ξ∗etAB =
+∞∑
k=0

tk

k!
ξ∗AkB = 0, ∀t ∈ R.

Let now y0 ∈ C. By de�nition, there exist T > 0 and u ∈ L2(0, T )m such that

0 = eTAy0 +

∫ T

0
e(T−t)ABu(t) dt,

or, equivalently,

0 = y0 +

∫ T

0
e−tABu(t) dt.
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Taking the inner product of this identity with ξ we obtain that

ξ · y0 = 0.

Since this is true for any y0 ∈ C, this shows that C ⊂ ξ⊥. But ξ⊥ is a vectorial space,
which is not Rn since ξ 6= 0, and therefore its interior is empty. It follows that C has an
empty interior as well, so that 0 6∈ C̊.

Let us now give an easy but interesting su�cient condition for the null-controllability
of (1.1)-(1.31).

Theorem 1.5.4. Assume that 0 ∈ Ů and:

(i) System (1.1) is controllable.

(ii) A is stable (that is, etAy0 → 0 as t→ +∞ for every y0 ∈ Rn).

Then, the system (1.1)-(1.31) is null-controllable.

Proof. By Theorem 1.5.3 we have 0 ∈ C̊. Thus, there exists r > 0 such that, for every
y0 ∈ Rn, if

∥∥y0
∥∥ < r, then y0 ∈ C. Let y0 ∈ Rn be �xed. Since A is stable, we have

etAy0 −−−−→
t→+∞

0.

Therefore, there exists T1 > 0 (large enough and depending on y0) such that∥∥eT1Ay0
∥∥ < r.

It follows that eT1Ay0 ∈ C. By de�nition of C, there exist T2 > 0 and u2 ∈ L2(T1, T1+T2)m,
with u2(t) ∈ U for a.e. t ∈ (T1, T1 + T2), such that the solution y2 to{

d

dt
y2 = Ay2 +Bu2, t ∈ (T1, T1 + T2),

y2(T1) = eT1Ay0,

satis�es y2(T1 + T2) = 0. Thus, we see that the control de�ned by

u(t) =

{
0 for t ∈ (0, T1),

u2(t) for t ∈ (T1, T1 + T2),

satis�es (1.31) and brings the corresponding solution to (1.1) from y0 to 0 in time T1+T2.

In the case of bounded control sets, there is a complete characterization of the null-
controllability (the proof is more complex though, see e.g. [Son98, Theorem 6] (applied to
−A and −B instead of A and B)):
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Theorem 1.5.5. Assume that 0 ∈ Ů and that U is bounded. Then, the system (1.1)-(1.31)
is null-controllable if, and only if, the following two conditions hold:

(i) The system (1.1) is controllable.

(ii) Reλ ≤ 0 for every eigenvalue λ ∈ C of A.

We recall that A is stable if, and only if, Reλ < 0 for every eigenvalue λ ∈ C of A (see
e.g. [Zab08, Theorem I.2.3]). Therefore the condition (ii) of Theorem 1.5.4 is stronger than
the condition (ii) of Theorem 1.5.5.

1.5.2 Time-optimal problems

In the previous section we provided some su�cient conditions to ensure the null-controllability
of (1.1)-(1.31) for large enough times. Therefore, it is natural to address the problem of
�nding the best time possible and a possible corresponding control.

1.5.2.1 Existence of time-optimal controls

De�nition 1.5.6 (Reachable set). For y0 ∈ Rn and T > 0, let RT (y0) ⊂ Rn be the
set of elements y1 ∈ Rn such that there exists u ∈ L2(0, T )m with (1.31) such that the
corresponding solution y to (1.1) satis�es y(T ) = y1. According to (1.2) it is the set of all
elements

eTAy0 +

∫ T

0
e(T−t)ABu(t) dt, (1.32)

for u ∈ L2(0, T )m with (1.31). For T = 0 we naturally set R0(y0) =
{
y0
}
.

Proposition 1.5.7 (Properties of the reachable set). Assume that U is compact. Let

y0 ∈ Rn be �xed. Then,

(i) RT (y0) is compact and convex for every T ≥ 0.

(ii) RT (y0) varies continuously with respect to T . More precisely, for every ε > 0, there
exists δ > 0 such that, for every T1, T2 ≥ 0, if |T1 − T2| < δ then

d(RT1(y0), RT2(y0)) ≤ ε,

where d(X1, X2) denotes the Hausdor� distance between the closed subsets X1 ⊂ Rn
and X2 ⊂ Rn, that is d(X1, X2) = max

{
supx1∈X1

d(x1, X2), supx2∈X2
d(X1, x2)

}
.

For a proof of this proposition we refer to [LM67, Theorem 2.1] if U is convex and
[LM67, Theorem 2.1A] for the general case.
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Theorem 1.5.8 (Existence of time-optimal controls). Assume that U is compact. Let

y0, y1 ∈ Rn be �xed. Assume that there exists T ≥ 0 such that y1 ∈ RT (y0). Then, the set{
T ≥ 0, y1 ∈ RT (y0)

}
has a minimum Tmin ≥ 0. By de�nition, this means that Tmin = 0

if, and only if, y1 = y0 and, if Tmin > 0, this means that there exists u ∈ L2(0, Tmin)m with

(1.31) such that the corresponding solution y to (1.1) satis�es y(Tmin) = y1. Such a u is

called a time-optimal control.

Proof. Let
E =

{
T ≥ 0, y1 ∈ RT (y0)

}
.

By assumption, E is not empty. To prove that E has a minimum we show that it is closed.
Let then Tk ∈ E, k ∈ N, and T ∈ R be such that Tk → T as k → +∞. We have to prove
that T ∈ E. Clearly, T ≥ 0. Let us now prove that y1 ∈ RT (y0). Since RT (y0) is closed
(see Proposition 1.5.7), it is equivalent to prove that d(y1, RT (y0)) = 0. Let ε > 0. We
have

d(y1, RT (y0)) ≤ d(y1, RTk(y0)) + d(RTk(y0), RT (y0)).

Since y1 ∈ RTk(y0) by de�nition of Tk, we have d(y1, RTk(y0)) = 0. Now, since Tk → T , by
continuity (see Proposition 1.5.7) there exists k ∈ N large enough so that d(RTk(y0), RT (y0)) ≤
ε. Therefore, we have proved that d(y1, RT (y0)) ≤ ε for every ε > 0, that is d(y1, RT (y0)) =
0.

1.5.2.2 Maximum principle

Before proving the so-called Pontryagin maximum principle, we establish some properties
of time-optimal controls.

De�nition 1.5.9 (Extremal control). Let y0 ∈ Rn and T > 0 be �xed. A function
u ∈ L2(0, T )m is called an extremal control if u satis�es (1.31) and the corresponding
solution y to (1.1) satis�es y(T ) ∈ ∂RT (y0).

Theorem 1.5.10 (Time-optimal controls are extremal). Assume that U is compact. Let

y0, y1 ∈ Rn be such that y1 6= y0. Assume that there exists T > 0 such that y1 ∈ RT (y0).
Let Tmin > 0 be the optimal time and let u ∈ L2(0, Tmin)m be a time-optimal control (whose

existences are guaranteed by Theorem 1.5.8). Then, u is an extremal control.

We will need the following result from convex analysis (for a proof, see e.g. [Zab08,
Theorem III.3.5])

Lemma 1.5.11 (Hyperplane separation theorem). Let C ⊂ Rn be a convex subset and

a ∈ Rn. There exists ξ ∈ Rn with ξ 6= 0 such that

ξ · y ≤ ξ · a, ∀y ∈ C

if, and only if, a 6∈ C̊.
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Proof of Theorem 1.5.10. We have to show that y1 ∈ ∂RTmin(y0). Since RTmin(y0) is a
closed convex (see Proposition 1.5.7), by Lemma 1.5.11, it is equivalent to prove that there
exists ξ ∈ Rn with ξ 6= 0 such that, for every ŷ1 ∈ RTmin(y0),

ξ · ŷ1 ≤ ξ · y1. (1.33)

Let Tk > 0, k ∈ N∗, be such that Tk → Tmin as k → +∞ with Tk < Tmin for every k ∈ N∗.
Since Tk < Tmin, by de�nition of Tmin we have

y1 6∈ RTk(y0), ∀k ∈ N∗.

In particular y1 6∈ ˚RTk(y0). Since RTk(y0) is convex, by Lemma 1.5.11 there exists ξk ∈ Rn
with ξk 6= 0 such that, for every w1 ∈ RTk(y0),

ξk · w1 ≤ ξk · y1. (1.34)

Since ξk 6= 0, we can assume that ‖ξk‖ = 1. Since (ξk)k is now a bounded sequence, we
can extract a subsequence (still denoted by (ξk)k) such that ξk → ξ as k → +∞ for some
ξ ∈ Rn with ξ 6= 0 (as ‖ξ‖ = 1). Let ŷ1 ∈ RTmin(y0) be �xed. Take a sequence (ŷ1

j )j
such that ŷ1

j → ŷ1 as j → +∞ with ŷ1
j ∈ RTkj (y0) for every j ∈ N∗ for some kj → +∞

as j → +∞. Such a sequence exists because of the continuity of the reachable sets (see
Proposition 1.5.7). Indeed, since Tj → Tmin as j → +∞, for j large enough there exists kj ,
with kj → +∞ as j → +∞, such that

d(RTkj (y0), ŷ1) <
1

j
.

Therefore, there exists ŷ1
j ∈ RTkj (y0) such that

d(ŷ1
j , ŷ

1) <
1

j
.

Finally, taking w1 = ŷ1
j in (1.34) and passing to the limit as j → +∞, we obtain (1.33).

Thanks to Theorem 1.5.10 we can now focus on the notion of extremal control.

Theorem 1.5.12 (Pontryagin maximum principle). Assume that U is compact. Let y0 ∈
Rn, T > 0 and u ∈ L2(0, T )m. The following statements are equivalent:

(i) u is an extremal control.

(ii) There exists z1 ∈ Rn with z1 6= 0 such that the corresponding solution z to the adjoint

system {
− d

dt
z = A∗z, t ∈ (0, T ),

z(T ) = z1,

satis�es

B∗z(t) · u(t) = max
u∈U

B∗z(t) · u a.e. t ∈ (0, T ). (1.35)
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Proof. By de�nition, u is an extremal control if, and only if, y(T ) ∈ ∂RT (y0), where y is
the corresponding solution to (1.1). Since RT (y0) is a closed convex (see Proposition 1.5.7),
by Lemma 1.5.11 this is equivalent to the existence of z1 ∈ Rn with z1 6= 0 such that, for
every ŷ1 ∈ RT (y0),

z1 · ŷ1 ≤ z1 · y(T ).

Recalling (1.32), this inequality is equivalent to

z1 ·
∫ T

0
e(T−t)AB (û(t)− u(t)) dt ≤ 0,

that is, ∫ T

0
B∗z(t) · (û(t)− u(t)) dt ≤ 0, (1.36)

for every û ∈ L2(0, T )m with û(t) ∈ U for a.e. t ∈ (0, T ). Therefore, if u satis�es (1.35)
then, in particular,

B∗z(t) · u(t) ≥ B∗z(t) · û(t) a.e. t ∈ (0, T ),

for every û ∈ L2(0, T )m with û(t) ∈ U for a.e. t ∈ (0, T ). Integrating this inequality, we
obtain (1.36). Conversely, assume that (1.36) holds and let us prove that u satis�es (1.35).
It is clear that there exists a function w : (0, T )→ U such that

max
u∈U

B∗z(t) · u = B∗z(t) · w(t), a.e. t ∈ (0, T ).

It can be proved that w can even be chosen so that w ∈ L2(0, T )m (see e.g. [LM67, Lemma
1.2A and 1.3A]). In particular,

B∗z(t) · w(t) ≥ B∗z(t) · u(t), a.e. t ∈ (0, T ),

and we can integrate this inequality to obtain the reverse inequality of (1.36) for û = w.
As a result, t 7−→ B∗z(t) · w(t)− B∗z(t) · u(t) is a positive function whose integral is zero
and therefore is itself equal to zero.

1.5.2.3 Bang-bang controls

Theorem 1.5.13 (Bang-bang principle). Assume that U is compact. Let y0 ∈ Rn, T > 0
and u ∈ L2(0, T )m Assume that (1.1) is controllable. If u is an extremal control, then

u(t) ∈ ∂U, a.e. t ∈ (0, T ).

Lemma 1.5.14. Let U be a closed subset of Rn. Let q ∈ Rm and de�ne the function

f : U −→ R by f(u) = q · u. Assume that q 6= 0. If u0 ∈ U is a point of local maximum of

f , then u0 ∈ ∂U .
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Proof. Let u0 ∈ U be a point of local maximum of f . Assume that u0 ∈ Ů . Then, there
exists ε > 0 such that u0 + εq ∈ U . But

f(u0 + εq) = f(u0) + ε ‖q‖2 > f(u0),

where the inequality is strict because q 6= 0. This is a contradiction with the local maxi-
mality of u0.

Lemma 1.5.15 (Number of switches). Assume that (1.1) is controllable. Then, for every
z1 ∈ Rn with z1 6= 0 and T > 0, the set

Z = {t ∈ (0, T ), B∗z(t) = 0}

is �nite.

Proof. Assume that Z is in�nite. Then, by analyticity of z we obtain

B∗z(t) = 0, ∀t ∈ [0, T ].

The controllability of (1.1) then implies that z1 = 0 (see Theorem 1.2.1), a contradiction.

Proof of Theorem 1.5.13. By Theorem 1.5.12, there exists z1 ∈ Rn with z1 6= 0 such that
z(t) = e(T−t)A∗z1 satis�es

B∗z(t) · u(t) = max
u∈U

B∗z(t) · u a.e. t ∈ (0, T ).

For every t ∈ (0, T ) and u ∈ U we de�ne ft(u) = B∗z(t) · u. Observe that B∗z = 0 only
on a set of zero measure by Lemma 1.5.15. Therefore, the conclusion follows from Lemma
1.5.14.

Remark 1.5.16. In the case m = 1 and U = [a, b] (a < b), we see that the function f of
Lemma 1.5.14 only has one maximum, which is attained at u = b if q > 0 and at u = a
if q < 0. Therefore, in this case, if u ∈ L2(0, T ) is an extremal control, then, for a.e.
t ∈ (0, T ),

u(t) =

{
b if B∗z(t) > 0,
a if B∗z(t) < 0,

for some z1 6= 0. This explains the terminology "bang-bang".
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1.6 Bibliographical notes

The proof of Proposition 1.3.9 is taken from [Boy17, Chapter II, Section 2]. For additional
material on constrained controllability and time-optimal problems we refer to [LM67, Chap-
ter 2], [Son98, Section 3.6 and Chapter 4] and the references therein. Let us also mention
that other type of constraints such as positivity of the controls are also discussed in [Zab08,
Part I, Chapter 4]. For controllability conditions for time-dependent linear O.D.E.s we refer
to [Cor07, Chapter 1]. Finally, good material for an introduction to the controllability of
nonlinear systems can be found in [Cor07, Chapter 3], [Son98, Chapter 4] and [Zab08, Part
II, Chapter 1].
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Chapter 2

Controllability of the heat equation

2.1 Background on the heat equation

In this chapter we consider the heat equation on a nonempty bounded open subset Ω ⊂ RN
of class C2: 

∂ty −∆y = 1ωu in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,

y(0) = y0 in Ω,

(2.1)

where:

• T > 0 is the time of control,

• y is the state y0 is the initial data,

• u is the control,

• ω ⊂ Ω localizes in space the control (we assume that ω is a nonempty open subset),

• 1ω is the characteristic function of the set ω, that is the function de�ned by

1ω(x) =

{
1 if x ∈ ω,
0 if x 6∈ ω.

We will also use the same notation to denote the operator 1ω : L2(Ω) −→ L2(Ω)
de�ned by

1ωu(x) =

{
u(x) if x ∈ ω,

0 if x 6∈ ω.

Note that 1ω is a bounded linear operator with ‖1ω‖L(L2(Ω)) ≤ 1.
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For a function y of (t, x) we will use the notation y(t) to denote the function y(t) : x 7−→
y(t, x).

Our presentation will be based on the following fundamental result:

Theorem 2.1.1 (Spectral decomposition). There exists an orthonormal basis of L2(Ω)
formed of eigenfunctions of the Dirichlet Laplacian ∆. More precisely, there exist {φk}k∈N∗ ⊂
H2(Ω) ∩H1

0 (Ω) and {−λk}k∈N∗ ⊂ R such that, for every k ∈ N∗,{
∆φk = −λkφk in Ω,
φk = 0 on ∂Ω,

with

〈φk, φ`〉L2(Ω) = δk`, ∀k, ` ∈ N∗, w =

+∞∑
k=1

〈w, φk〉L2φk, ∀w ∈ L2(Ω),

and

0 < λ1 ≤ λ2 ≤ . . . , λk −−−−→
k→+∞

+∞.

Let us do a little digression to motivate the notion of solution we will introduce for
(2.1). Assume that y ∈ C2([0, T ]×Ω) is a classical solution to (2.1) (that is, the equation,
the boundary condition and the initial condition hold pointwisely). Then, we multiplying
(2.1) by φk and integrating over Ω we obtain the O.D.E.{

y′k(t) + λkyk(t) = fk(t), t ∈ (0, T ),

yk(0) = y0
k,

where

yk(t) = 〈y(t), φk〉L2 , y0
k =

〈
y0, φk

〉
L2 , fk(t) = 〈1ωu(t), φk〉L2 .

Thus,

yk(t) = e−λkty0
k +

∫ t

0
e−λk(t−s)fk(s) ds, ∀t ∈ [0, T ].

Since y(t) ∈ L2(Ω), we have

y(t) =
+∞∑
k=1

〈y(t), φk〉L2φk.

Therefore,

y(t) =

+∞∑
k=1

e−λkty0
kφk +

+∞∑
k=1

(∫ t

0
e−λk(t−s)fk(s) ds

)
φk.
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2.2. CONTROLLABILITY AND DUALITY 35

De�nition 2.1.2 (Mild solution). Let T > 0, y0 ∈ L2(Ω) and u ∈ L2(0, T ;L2(Ω)). The
function y : (0, T )× Ω −→ R de�ned for every t ∈ [0, T ] by

y(t) = S(t)y0 +

∫ t

0
S(t− s)1ωu(s) ds, (2.2)

where

S(t)y0 =
+∞∑
k=1

e−λkt
〈
y0, φk

〉
L2φk,

is called the (mild) solution to (2.1).

Note that we have the estimate

‖y(t)‖L2(Ω) ≤
∥∥y0
∥∥
L2(Ω)

+
√
T ‖u‖L2(0,T ;L2(Ω)) , ∀t ∈ [0, T ]. (2.3)

Remark 2.1.3. Formally, (2.1) can be recast as an in�nite dimensional O.D.E.in the Hilbert
space H = L2(Ω): {

d

dt
y = Ay +Bu, t ∈ (0, T ),

y(0) = y0,

where A : D(A) ⊂ H −→ H is the Dirichlet Laplacian operator:

A = ∆, D(A) = H2(Ω) ∩H1
0 (Ω),

and B ∈ L(H,U) with control space U = L2(Ω) is simply B = 1ω. Then, (2.1) is nothing
but the Duhamel's formula where S(t) is the generalization of the exponential of a matrix
(it is the so-called semigroup generated by ∆).

All along this chapter we choose a presentation that is based on the explicit Fourier
representation for the solution to the heat equation (2.2) (and of its adjoint system (2.7)
below) since it does not require any particular knowledge in PDEs, semigroup nor spectral
theory.

2.2 Controllability and duality

De�nition 2.2.1 (Controllability). We say that (2.1) is:

(i) exactly controllable in time T if, for every y0, y1 ∈ L2(Ω), there exists u ∈ L2(0, T ;L2(Ω))
such that the corresponding solution y to (2.1) satis�es

y(T ) = y1.

(ii) null-controllable in time T if the above property holds for y1 = 0.
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(iii) approximately controllable in time T if, for every ε > 0 and every y0, y1 ∈ L2(Ω), there
exists u ∈ L2(0, T ;L2(Ω)) such that the corresponding solution y to (2.1) satis�es∥∥y(T )− y1

∥∥
L2(Ω)

≤ ε.

Remark 2.2.2. The notion of exact controllability is not relevant for the heat equation
because of its regularizing e�ect. Indeed, the local parabolic regularity implies that the
solution y to (2.1) with y0 = 0 satis�es y(ε) ∈ C∞(O) for every open subset O ⊂⊂ Ω\ω as
soon as ε > 0. It follows that a target y1 ∈ L2(Ω)\C∞(O) for some open subset O ⊂⊂ Ω\ω
will never be reached, whatever the time T is.

We now proceed as in the �nite dimensional case. We introduce the linear operators

FT : L2(Ω) −→ L2(Ω)
y0 7−→ y(T ),

where y is the solution to the equation (2.1) with u = 0, and

GT : L2(0, T ;L2(Ω)) −→ L2(Ω)
u 7−→ ŷ(T ),

where ŷ is the solution to the equation (2.1) with y0 = 0. With these notations, we can
restate the di�erent notions of controllability as follows:

(i) (2.1) is null-controllable in time T if, and only if,

ImFT ⊂ ImGT .

(ii) (2.1) is approximately controllable in time T if, and only if,

ImGT = L2(Ω).

Since FT and GT are bounded linear operators thanks to (2.3), by duality we obtain:

(i) (2.1) is null-controllable in time T if, and only if, (see e.g. [TW09, Proposition 12.1.2])

∃C > 0,
∥∥F ∗T z1

∥∥2

L2(Ω)
≤ C2

∥∥G∗T z1
∥∥2

L2(Ω)
, ∀z1 ∈ L2(Ω).

(ii) (2.1) is approximately controllable in time T if, and only if,

kerG∗T = {0} .
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We continue to mimic the procedure developed in the �nite dimensional case by computing
the adjoint operators of FT and GT . To this end we start by multiplying formally the
equation (2.1) by a smooth function z and we integrate over (0, T )× Ω. This leads to the
following fundamental relation〈

y(T ), z1
〉
L2(Ω)

−
〈
y0, z(0)

〉
L2(Ω)

=

∫ T

0
〈u(t),1ωz(t)〉L2(Ω) dt, (2.4)

if z is the solution to the so-called adjoint system:
−∂tz −∆z = 0 in (0, T )× Ω,

z = 0 on (0, T )× ∂Ω,

z(T ) = z1 in Ω.

(2.5)

Note that the equation in (2.5) is backward in time and therefore a priori ill-posed. However,
observe that we consider a �nal condition in (2.5) and not an initial condition. Thus, the
simple change of variable t 7→ T − t shows that z(t) = z̃(T − t), where z̃ is the solution to

∂tz̃ −∆z̃ = 0 in (0, T )× Ω,

z̃ = 0 on (0, T )× ∂Ω,

z̃(0) = z1 in Ω.

(2.6)

As in De�nition 2.1.2, by solution to (2.6), we mean

z̃(t) =
+∞∑
k=1

e−λkt
〈
z1, φk

〉
L2φk, ∀t ∈ [0, T ]. (2.7)

The relation (2.4) can then be checked explicitly using (2.2) and (2.7). This relation makes
the computations of F ∗T and G∗T immediate. Therefore, we have obtained the following
result:

Theorem 2.2.3 (Duality). Let T > 0.

(i) (2.1) is null-controllable in time T if, and only if, there exists C > 0 such that

‖z(0)‖2L2(Ω) ≤ C
2

∫ T

0
‖1ωz(t)‖2L2(Ω) , ∀z1 ∈ L2(Ω), (2.8)

where z is the solution to the adjoint system (2.5).

(ii) (2.1) is approximately controllable in time T if, and only if,

∀z1 ∈ L2(Ω),
(
1ωz(t) = 0, ∀t ∈ [0, T ]

)
=⇒ z1 = 0, (2.9)

where z is the solution to the adjoint system (2.5).
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Remark 2.2.4. For the equation (2.1), the null-controllability is a stronger property than
the approximate controllability. Indeed, the adjoint system (2.5) satis�es the so-called
backward uniqueness, namely,

z(0) = 0 =⇒ z1 = 0.

This shows that (2.8) implies (2.9). Therefore, by Theorem 2.2.3, if (2.1) is null-controllable
in time T , then (2.1) is approximately controllable in time T .

2.3 Approximate controllability

The goal of this section is to prove the following result.

Theorem 2.3.1 (Approximate controllability). For every T > 0, (2.1) is approximately

controllable in time T .

In this section we will need to consider the distinct eigenvalues of the Dirichlet Laplacian

∆. They will be denoted by
{
−λ̂k

}
k∈N∗

and assumed to be ordered as

0 < λ̂1 < λ̂2 < . . . .

Note that λ̂k → +∞ as k → +∞ since, by de�nition, we have λ̂k ≥ λk. For every k ∈ N∗,
let then Pk : L2(Ω) −→ L2(Ω) be the orthogonal projection on ker(−λ̂k − ∆). Thus, we
have

Pkz
1 =

∑
j:λj=λ̂k

〈
z1, φj

〉
L2φj , z1 ∈ L2(Ω).

Let us restate all the properties we need from {φj}j∈N∗ in terms of {Pk}k∈N∗ . Clearly, Pk
is a bounded linear operator. Observe that{

P ∗k = Pk,
PkP` = δk`Pk, ∀` ∈ N∗.

In particular, we have the following useful fact that will be used ceaselessly to compute the
square of the L2-norm of various series:∥∥∥∥∥

+∞∑
k=1

αkPkz
1

∥∥∥∥∥
2

L2(Ω)

=
+∞∑
k=1

|αk|2
∥∥Pkz1

∥∥2

L2(Ω)
,

where z1 ∈ L2(Ω) and (αk)k∈N∗ are such that one of the series converges. Finally, note
that, for every K ∈ N∗, there exists JK ∈ N∗ with JK ≥ K such that, for every z1 ∈ L2(Ω)
and t ∈ [0,+∞) we have

K∑
k=1

e−λ̂ktPkz
1 =

JK∑
j=1

e−λjt
〈
z1, φj

〉
L2φj .
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Passing to the limit K → +∞, this shows that

z1 =

+∞∑
k=1

Pkz
1, z1 ∈ L2(Ω), (2.10)

and that the solution z̃ to (2.6) is

z̃(t) =
+∞∑
k=1

e−λ̂ktPkz
1, ∀t ∈ [0,+∞). (2.11)

Note in particular that (2.10) implies that, for every z1 ∈ L2(Ω),(
Pkz

1 = 0, ∀k ∈ N∗
)
⇐⇒ z1 = 0. (2.12)

Let us now give two important lemma for the proof of Theorem 2.3.1.

Lemma 2.3.2. For every z1 ∈ L2(Ω), the solution z̃ to (2.6) is analytic on (0,+∞).

Remark 2.3.3. It follows from Lemma 2.3.2 that (2.9) is equivalent to

∀z1 ∈ L2(Ω),
(
1ω z̃(t) = 0, ∀t ∈ [0,+∞)

)
=⇒ z1 = 0.

Thus, the approximate controllability of (2.1) does not depend on the time of control T .

Proof of Lemma 2.3.2. From the expression (2.11) we can check that z̃ is in�nitely di�er-
entiable on (0,+∞) with, for every t ∈ (0,+∞) and j ∈ N,

∂jt z̃(t) =

+∞∑
k=1

(−λ̂k)je−λ̂ktPkz1.

To prove that z̃ is analytic on (0,+∞) we recall that it is then su�cient to establish that

∀[a, b] ⊂ (0,+∞), ∃C > 0, max
t∈[a,b]

∥∥∥∂jt z̃(t)∥∥∥
L2(Ω)

j!
≤ Cj+1, ∀j ∈ N. (2.13)

Indeed, since z̃ ∈ C∞(0,+∞) we can write the Taylor expansion of z̃ up to any order. More
precisely, for every t0 ∈ (0,+∞), let ρ > 0 be such that [t0 − ρ, t0 + ρ] ⊂ (0,+∞). Then,
for every n ∈ N and for every t ∈ R with |t− t0| < ρ, the remainder

Rn(t) = z̃(t)−
n∑
j=0

∂jt z̃(t0)

j!
(t− t0)j ,
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satis�es

‖Rn(t)‖L2(Ω) ≤ max
ξ∈[t0−ρ,t0+ρ]

∥∥∂n+1
t z̃(ξ)

∥∥
L2(Ω)

|t− t0|n+1

(n+ 1)!
.

Thus, using (2.13) with [a, b] = [t0 − ρ, t0 + ρ] and taking r > 0 such that Cr < 1 we see
that Rn(t) → 0 as n → +∞ for every |t− t0| < r. Let us now prove (2.13). For every
j ∈ N∗, since

max
x>0

xje−x = jje−j ,

we have, for every t > 0,∥∥∥∂jt z̃(t)∥∥∥2

L2(Ω)
≤
(

1

t

)2j (j
e

)2j ∥∥z1
∥∥2

L2(Ω)
.

Using Stirling's formula (j/e)j/j! ∼ 1/
√

2πj, we see that (2.13) holds.

We will also need the following important result (for a proof see e.g. [Hör76, Theorem
7.5.1]):

Lemma 2.3.4. Let k ∈ N∗. Every φ ∈ ker(−λ̂k −∆) is analytic on Ω.

Remark 2.3.5. It follows from Lemma 2.3.4 that we have the following property:

ker(−λ̂k −∆) ∩ ker1ω = {0} , ∀k ∈ N∗. (2.14)

Observe that, formally, this is nothing but the Fattorini-Hautus test (1.21) with A = ∆ and
B = 1ω. Note as well that (2.14) is a necessary condition to the approximate controllability
(just mimic the �rst part of the proof of Theorem 1.3.11). We will see below that this
condition is also su�cient. It is the key property for the approximate controllability.

We are now going to provide two proofs of Theorem 2.3.1. The �rst proof right below
is the classical proof that is presented in many textbooks.

Proof of Theorem 2.3.1. By Remark 2.3.3, we have to prove that

∀z1 ∈ L2(Ω),
(
1ω z̃(t) = 0, ∀t ∈ [0,+∞)

)
=⇒ z1 = 0,

where z̃ is the solution to (2.6). From the expression (2.11) of z̃ and since 1ω is a bounded
operator, we have 1ω z̃(t) = 0 for every t ∈ [0,+∞) if, and only if,

+∞∑
k=1

e−λ̂kt1ωPkz
1 = 0, ∀t ∈ [0,+∞). (2.15)

Multiplying this identity by eλ̂1t, this is equivalent to

1ωP1z
1 +

+∞∑
k=2

e−(λ̂k−λ̂1)t
1ωPkz

1 = 0, ∀t ∈ [0,+∞).
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Since λ̂k − λ̂1 ≥ λ̂2 − λ̂1 > 0 for every k ≥ 2, taking the limit t→ +∞, we obtain

1ωP1z
1 = 0.

Since P1z
1 ∈ ker(−λ̂1 −∆), (2.14) yields

P1z
1 = 0.

Coming back to (2.15) we obtain

+∞∑
k=2

e−λ̂kt1ωPkz
1 = 0, ∀t ∈ [0,+∞).

Multiplying this time by eλ̂2t and using the same arguments as before we obtain that
P2z

1 = 0. By induction, we obtain

Pkz
1 = 0, ∀k ∈ N∗,

so that z1 = 0 by (2.12).

Let us now present a di�erent proof. It is slightly longer in this case but it has the
advantage to be generalizable to more general parabolic equations than the heat equation.
Note in particular that in the proof below it is not directly required to write the solution
along the projections Pk (which is a basis property and can be di�cult to establish for
general parabolic systems). In other words, the property (2.12) is more important than
(2.10). This second proof essentially relies on the following lemma that shows the relations
between the solution to the adjoint system (2.6), what is called the resolvent R(µ), and the
spectral projections Pk. We prove these relations in the particular case of the heat equation
but let us mention that they remain true for a way larger class of systems.

Lemma 2.3.6. Let

ρ(∆) = C\
{
−λ̂k

}
k∈N∗

,

and let R(µ) : L2(Ω) −→ L2(Ω) be the operator de�ned for every µ ∈ ρ(∆) by

R(µ)z1 =

+∞∑
k=1

1

µ+ λ̂k
Pkz

1, z1 ∈ L2(Ω). (2.16)

The set ρ(∆) is called the resolvent set of ∆ and the operator R(µ) is called the resolvent

of ∆. We have

(i) ρ(∆) is open, R(µ) is a well-de�ned bounded linear operator for µ ∈ ρ(∆) and for

every z1 ∈ L2(Ω), µ 7−→ R(µ)z1 is analytic on ρ(∆).
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(ii) For every µ > −λ̂1 and z1 ∈ L2(Ω) we have

R(µ)z1 =

∫ +∞

0
e−µtz̃(t) dt,

where z̃ is the solution to (2.6).

(iii) For every k ∈ N∗ and z1 ∈ L2(Ω) we have

Pkz
1 =

1

2πi

∫
Ck

R(µ)z1 dµ,

where Ck =
{
µ ∈ C,

∣∣∣µ+ λ̂k

∣∣∣ ≤ rk} is a positively oriented circle centered in −λ̂k
with su�ciently small radius rk > 0 so that Ck does not contain any other eigenvalues

than −λ̂k (this is possible because the eigenvalues
{
−λ̂k

}
k∈N∗

are isolated in C).

Proof. As λ̂k → +∞, the set σ(∆) =
{
−λ̂k

}
k∈N∗

is closed. Indeed, let vj ∈ σ(∆) and

v ∈ C be such that vj → v as j → +∞ and let us prove that v ∈ σ(∆). Note that,

necessarily, vj , v ∈ R. Since vj ∈ σ(∆), there exists kj ∈ N∗ such that vj = −λ̂kj .
Since vj → v, there exists J ∈ N∗ such that, for every j ≥ J , we have vj ≥ v − 1. On

the other hand, since −λ̂k → −∞, there exists K ∈ N∗ such that, for every k ≥ K,
we have −λ̂k < v − 1. Therefore, for j ≥ J , we must have kj < K. This shows that

{vj}j∈N∗ =
{
−λ̂k1 , . . . ,−λ̂kJ−1

}
∪
{
−λ̂1, . . . ,−λ̂K−1

}
. In particular, v ∈ σ(∆).

For µ ∈ C, let us introduce the distance from µ to the set σ(∆):

d(µ) = d(µ, σ(∆)) = inf
k∈N∗

∣∣∣µ+ λ̂k

∣∣∣ .
Since σ(∆) is closed we have d(µ) = 0 if, and only if, µ ∈ σ(∆). Let µ ∈ ρ(∆) be �xed.
For j ∈ N∗, let Sj =

∑j
k=1

1

µ+λ̂k
Pkz

1. For every p > q ≥ 1, we have

‖Sp − Sq‖2L2(Ω) =

p∑
k=q+1

1∣∣∣µ+ λ̂k

∣∣∣2
∥∥Pkz1

∥∥2

L2(Ω)
≤ 1

d(µ)2

p∑
k=q+1

∥∥Pkz1
∥∥2

L2(Ω)
,

which proves that {Sj}j∈N∗ is a Cauchy sequence in L2(Ω). Therefore, R(µ)z1 is well-
de�ned for every µ ∈ ρ(∆). Moreover, R(µ) clearly bounded with

∥∥R(µ)z1
∥∥2

L2(Ω)
=

+∞∑
k=1

1∣∣∣µ+ λ̂k

∣∣∣2
∥∥Pkz1

∥∥2

L2(Ω)
≤ 1

d(µ)2

∥∥z1
∥∥2
. (2.17)
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Let z1 ∈ L2(Ω) be now �xed. To check that µ 7−→ R(µ)z1 is analytic on ρ(∆) we show
that it is holomorphic on ρ(∆). Let µ ∈ ρ(∆) be �xed. Let h ∈ ρ(∆) be small enough so
that µ+ h ∈ ρ(∆). Formally, we expect to obtain d

dzR(µ)z1 = Q(µ), where

Q(µ) =
+∞∑
k=1

−1

(µ+ λ̂k)2
Pkz

1.

The same reasoning as in (2.17) shows that this series is convergent. Let us compute

∥∥∥∥R(µ+ h)z1 −R(µ)z1

h
−Q(µ)

∥∥∥∥2

L2(Ω)

=

+∞∑
k=1

 h∣∣∣µ+ λ̂k

∣∣∣2 ∣∣∣µ+ h+ λ̂k

∣∣∣
∥∥Pkz1

∥∥2

L2(Ω)

≤ h

d(µ)2d(µ+ h)

∥∥z1
∥∥2

L2(Ω)
.

Since µ→ d(µ) is continuous on C, this proves that d
dzR(µ)z1 = Q(µ).

To obtain (ii) we multiply the expression of z̃ by e−µt, integrate over (0,+∞) and use
the fact that µ+ λ̂k > 0 to compute the integral:∫ +∞

0
e−µtz̃(t) dt =

+∞∑
k=1

(∫ +∞

0
e−(µ+λ̂k)t dt

)
Pkz

1 =
+∞∑
k=1

−1

−(µ+ λ̂k)
Pkz

1 = R(µ)z1.

Finally, to obtain (iii) we integrate over Ck the expression (2.16) of R(µ)z1, use Cauchy's
integral formula for j = k and Cauchy's integral theorem for j 6= k:

1

2πi

∫
Ck

R(µ)z1 dµ =

+∞∑
j=1

(
1

2πi

∫
Ck

1

µ+ λ̂j
dµ

)
Pjz

1 =

+∞∑
j=1

δkjPjz
1 = Pkz

1.

All the above inversions between integrals and series can be justi�ed.

Let us now turn out to the second proof of Theorem 2.3.1.

Second proof of Theorem 2.3.1. By Remark 2.3.3, we have to prove that

∀z1 ∈ L2(Ω),
(
1ω z̃(t) = 0, ∀t ∈ [0,+∞)

)
=⇒ z1 = 0,

where z̃ is the solution to (2.6). Let us introduce

N =
{
z1 ∈ L2(Ω), 1ω z̃(t) = 0, ∀t ∈ [0,+∞)

}
.

We want to establish that N = {0}. Firstly, let us prove that N ⊂ Ñ where

Ñ =
{
z1 ∈ L2(Ω), 1ωR(µ)z1 = 0, ∀µ ∈ ρ(∆)

}
,
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where ρ(∆) is the resolvent set of ∆ and R(µ) is the resolvent of ∆. Let then z1 ∈ N .
Multiplying the identity

1ω z̃(t) = 0

by e−µt with µ > −λ̂1 and integrating over (0,+∞) with respect to t we obtain (see item
(ii) of Lemma 2.3.6)

1ωR(µ)z1 = 0.

Since µ 7→ R(µ)z1 is analytic on ρ(∆) (see item (i) of Lemma 2.3.6) the previous identity
actually holds for every µ ∈ ρ(∆) and thus z1 ∈ Ñ . Secondly, let us prove that

Ñ ⊂ kerPk, ∀k ∈ N∗, (2.18)

as it implies that Ñ = {0} by (2.12). Let z1 ∈ Ñ . Then, for every µ ∈ ρ(∆),

1ωR(µ)z1 = 0. (2.19)

Let Ck =
{
µ ∈ C,

∣∣∣µ+ λ̂k

∣∣∣ ≤ rk} be a positively oriented circle centered in −λ̂k with

su�ciently small radius rk > 0 so that Ck does not contain any other eigenvalues than
−λ̂k. Integrating (2.19) over Ck gives (see item (iii) of Lemma 2.3.6)

1ωPkz
1 = 0.

Since Pkz
1 ∈ ker(−λ̂k −∆), (2.14) yields

Pkz
1 = 0.

Since k ∈ N∗ was arbitrary, we thus have (2.18).
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